
COGS
(Central Online Grading System)

Dec 15-21

Problem Statement

● Open ended grading homework
● Blackboard is a frustrating interface

○ Doesn’t display .c or .txt files
○ Grading a single assignment is a tedious, multi-stepped process

Old System

TA was responsible for:
● Downloading files
● Compiling Code
● Running Executable

○ Providing Input/Output

● Additional steps to catch cheating
● Grading

New System

COGS is responsible for:
● Hosting files
● Compiling Code
● Running Executable

○ Using student provided input/output

● Detecting Cheating

TA is responsible for:
● Grading

http://www.youtube.com/watch?v=uNndavoNR_s

http://www.youtube.com/watch?v=SWFzBkpJRo8

Solution Overview

Goal: Streamline the Grading Process

● Main Features:
○ Easy student submission
○ Secure compiler
○ Automatic testing
○ Cheating detection
○ Streamlined grading

COGS

System Sketch Shibboleth

Web Front End

Job API

Grader

Schedule Checker

Student Code

HTTPS

Localhost

Standard I/O

SELinux + Chroot

User Interface

Secured Compiler

Users MOSS

Web Front End

● Represents the User interface
● Used a PHP framework called “Zend Framework”

○ Modularized, secure, and popular
○ Same framework used by Iowa State

Technical Challenge - Integrate ISU Theme

- Challenge: Integrate Iowa State University web theme
- Solution: Built a multi-layer View Helper system that would intelligently

render internal objects like Forms and Tables for the ISU theme.

Grading Timeline

● Creating Assignment
○ Professor only
○ Due dates
○ Grading rubric
○ Attachments

Grading Timeline

● Student Submits
○ Custom execution inputs
○ Back End runs
○ Returns errors, outputs
○ Last submission is used

Grading Timeline

● T.A. Grading
○ Streamlined grading pages
○ Can create new execution
○ Notes viewable by students
○ Upload to Blackboard via .csv

Cheating Detection

Other Features

● Create/Read/Edit/Delete
○ Classes
○ Class Sections
○ Assignments
○ Grades

● Assign TAs, Professors
● Blackboard Integration

Job API + Schedule Checker

● Interfaces between the Front End and Back End
● Back End polls the API periodically for new jobs
● Jobs are assignment submissions
● Handles scheduling and throttling.

Web Front End

Job API

Grader

Schedule Checker

Localhost

Grader

Grader: Automated system that compiles and runs student code and outputs a
report.

Report: Contains compile errors, code input/output, contents of created
files/directories, etc.

Runs the student code in a jailed environment.

Developed through test driven development. Grader

Schedule Checker

Student Code

Standard I/O

SELinux + Chroot

Attack Vectors

● Malicious code submissions
● Cross Site Scripting
● SQL Injection
● Buffer Overruns of grader
● User Masquerading
● Session Hijacking

System Security & SELinux Policy

● System Compartmentalization:
○ System has three distinct compartments with limited

interaction between parts

● SELinux Policy:
○ Further restricts the permissions and capabilities of student

code
○ Restricts system calls to only necessary ones

● Chroot Jail:
○ A temporary and restricted file system where student code

is run to protect the system from the users while allowing

the students to access a file system with their code.

Grader

Schedule Checker

Student Code

SELinux + Chroot

Standard I/O

Front End Security

● Primarily best practices
○ Use CSRF tokens
○ Sanitize input to prevent SQL injection
○ Users can only access pages they need
○ Users are authenticated with Shibboleth
○ Focused on OWASP’s Top 10

Technical Challenge - Running Student Code

● Buffering on student code process needed to be turned off to have a
“conversational style” of input and output

● Turning off buffering on the parent process and then forking the student
code process did not fix the problem

● Solution: Compile time binary injection

Student Source
Code

Symbols

main()

int main()
{
 setvbuf();
 studentMain();
}

main()

main()

studentMain()

Symbols

Compile

Compile

Injected Code

Binary Copy

Resulting
Executable

The Solution

Testing

● Unit testing with Google Tests
● Manual tests
● Alpha testing sometime in the future

Looking Forward

● Continued support
○ Upgrades
○ Bug fixes

● Training TA’s
● Use by more professors

Questions?

