Design Document DEC15-21
COGS - Central Online Grading System

Version: 3.0

Team
Kathryn Widen: Team Leader
Forrest Scott: Webmaster
Zachary Lones: Communication Leader
Daniel McDonough: Key Concept Holder 1
Daniel Riechers: Key Concept Holder 2

Advisor/Client: Dr. Daniels

Table of Contents

Project Statement
Definitions
Use Cases
Scoring an Assignment:
Creating an assignment:
Student submitting an assignment:
Submitting Grades To Bb:
Creating a new class (once per semester):
Edit a class (like create a class)
Cheating:
Non-functional Requirements:
Functional Requirements:
Software Requirements
Grader
Web Interface
Cheating detection
System Requirements
Security Requirements
Integration Requirements
System Block Diagram
PHP Framework
Zend Framework 2
Modules - what we make
Configuration - let ZF2 do the busy work
Controllers - the main brains
PHP Framework Directory Map

Zend Framework2 Execution Flow

Testing
Screen Sketches

Project Statement

COGS seeks to make the grading process easier for TAs and professors by automating some
steps of grading, detecting cheating, and automating the grade upload to Blackboard.

Definitions

Server: Hosts grader, web interface, and score database

Grader: Compiles and runs student code, is not a human

Grade Report: The output of the compiler and code as well as source code. (ie

compile
errors, and code output) This is what the instructor uses to score submissions.

Cheating Report: A report that includes all cheating related info that is generated for

the
final submission for each student per assignment.

Student: Person who submits code to COGS for review

Instructor: Person who uses grader report to assign a score to submissions.

Head Instructor(s): Person with slightly more power, allowed to submit grades to Bb

Submission: A student’s single attempt at an assignment.

Unit Tests: Automated tests performed by the grader on student code (not to be
confused with unit testing for testing the functionality of the system.)

COTS: Commercial off the shelf.

ZF2: Zend Framework 2, the php framework for the COGS web front-end

Structural Requirements Analysis: Custom searches instructors can program that can
analyze source code. For instance, a Structural Requirement can be: “Does the
student use a for loop?”

Use Cases

Creating an assignment:
e An Instructor navigates to the Class List Page
e The Instructor finds their desired class and open Assignment List Page
e The Instructor clicks on Add a New Assignment.
o (Optional) The instructor may click Copy to a New Assignment
e The Instructor will fill out or edit the following values using a form:

o Begin Date/Time

o Due Date/Time

o Last Accepted Date/Time

o Number of Points Deducted Per Day Late

o Assignment Title and Description

o Attachable Files (optional)
o Unit Tests* (optional)
o Structural Requirements Analysis* (optional)
o Checkbox Based Grading (optional)
o Numberbox Based Grading (optional)
o Total Score Possible

(*) Denote a stretch goal use case or requirement.

Student submitting an assignment:

Student navigate to an assignment submission page

Students upload their source code

Students may write submission notes

Students may create any number of execution input blocks
o Students press Add New Input button to open a new Text Input Element
o Students press Submit to submit assignment

Student viewing submission result:

Student navigates to Assignment Submission List
Student clicks on their desired submission result that has completed execution (not
pending)

e The ungraded submission result page would show the preliminary report:

Student Source Code

Compiler or runtime errors

Unit Test Results*

Execution Input/Output

e The student may click on Resubmit to resubmit the assignment.

o
o
o
o

Scoring an Assignment:

e The Instructor navigates to the assignment list
e The Instructor selects the assignment to grade
e A scoring page is presented
Page contains Student source code
Summarization of Cheating Report and Link
Execution runs and results
Scoring checkboxes
Scoring numberboxes
Final grade adjuster
Instructor notes
o Next button
e A instructor will see an alert if the cheating algorithm detects significant changes of
cheating.
o The instructor can click on the alert to see the cheating report
The instructor can re-execute the code with custom execution input
The instructor fills out all of the scoring form
The instructor clicks on Save and Next to start grading next assignment

O O O O O O

Submitting Grades To Bb:

e The Instructor navigates to assignment List
e The Instructor presses “Download Grades as CSV” to download the grade file
e The Instructor uses Blackboard interface to upload new grades

Creating or Editing a new class (once per semester):

e The Instructor navigates to the class list
e The Instructor presses New Class to open the new class form
o Optionally the Instructor can press Edit Class to edit a class in a form
e The Instructor will fill out the following form:
Name
Semester ID
Dates
Sections
e The Instructor can enter CSV data to add students
e The Instructor can enter CSV data to add Instructors

o
o
o
o

Cheating:
e The Instructors view the cheating report

e All cheating concerns are handled off system

Non-functional Requirements:
e System will prioritize efficiency for Instructor/Head Instructor allowing grading
assignments to be done with minimal time/clicks.
e The policy used for Mandatory Access Control will be transparent, and maintainable
for system administrators.
e All COTS software will be verified to be secure and reliable.

Functional Requirements:

Software Requirements

e Grader

O

©)
o
©)

The system will work with both Gee and Clang

The system will compile students’ code and generate reports.

The system will provide compile output in the Preliminary Report.

The system will give students the option to provide stdin inputs that will be used
in the execution of their code.

The system will show student input and their program’s output in the
Preliminary Report.

The system will give Instructors the option to provide new inputs for student’s
code. The new inputs and outputs will be shown in the Final Report.

The system will run unit tests if they have been provided by the Instructor in the
assignment. The system will generate a score according to pass/fail of unit
tests, this score will be included in the Preliminary Report.

The system will allow Instructors to modify any scores given by Grader, and the
modified score will be shown in the Final Report.

Student will be provided both the Preliminary Report, and the Final Report.

e Web Interface

o

Creating Assignments
i. The system will allow Instructor to create an assignment that has the
following properties:
1. Begin Date/Time
2. Due Date/Time
3. Last Accepted Date/Time

o

o

o

Number of Points Deducted Per Day Late
Assignment Title and Description
Attachable Files
Unit Tests*
Structural Requirements Analysis*®

9. Checkbox Based Grading

10. Numberbox Based Grading

11. Total Score Possible
The system will allow an old assignment to be selected as a template
for a new assignment.
The system will allow Instructor to include Unit Tests with assignment.*
The system will allow Instructor to include checkboxes that will modify
student score when being graded.
The system will allow submissions for assignments only between Begin
Date/Time and Last Accepted Date/Time.

© N O

Student Submission

iv.

After the Begin Date/Time is passed Students will be able to submit
assignments

Students won’t be able to submit assignments past the Last Accepted
Date/Time

Students will be deducted points if the final submission is past the Due
Date/Time, calculated from “Number of Points Deducted Per Day Late”.
The system will allow multiple submissions and use the last submission
for grading.

Assignment Executing

The Back End will generate an execution report for each submission by
the student.

The Execution Report will include all compiler and run-time errors.

The Execution Report will include all terminal output per execution run.
The system will display compiled code and Report to student when they
submit code. This report will include passed/failed unit tests and score
if applicable.

ASS|gnment Grading

Cheating Reports and Grade Reports will be received from the Back
End after the Final Submission Date/Time.
The system will divide workload of Instructors according to Grading
Group.
The system will provide a page that Instructors to use that will
streamline the grading process.

1. The page will show the student’s source code

2. The page will have itemized checkboxes from the assignment

creation

3. The page will have itemized numberboxes from the assignment
creation
4. The page will have a numberboxes that will allow the instructor
to modify the final grade manually
5. There will be a text input for the instructor to enter notes.
iv. The system will implement locks to prevent race-conditions when
multiple instructors are grading the same assignment.
v. The system will alert the instructor when cheating is detected.
o Cheating Detection Front End
i. Cheating Report will be received from the Back End Grader.
ii. Cheating Reports will be linked from the Grading page.
iii. Cheating Reports will include links to submissions that are similar.
o Grade Submission Front End
i. The system will provide, at request of Head Instructor, a file containing
students’ scores for an assignment as well as other necessary
information in a format that it can be manually checked and then
submitted to blackboard.
ii. Grades will also be viewable by the students via the Front End.
o Class Editing
i. The system will allow the creation of a new Class with the following
properties:
1. Name
2. Semester ID
3. Dates(?)
4. Add accounts with following properties:

a. NetlD
b. Type (Instructor/Student)
c. Section

d. Grading Group
ii. The system will allow multiple accounts to be added at once via upload
file of comma separated values.
iii. The system will allow account to be added by manually typing required
properties.

Cheating detection
o The system will run cheating detection algorithm on all students’ code after Last
Accept Date/Time has passed.
The system will include any cheating detection in the Final Report.
The system will generate a Report viewable by Instructors if bulk cheating is
detected.

System Requirements

e Security Requirements

O
O
O

The system shall use Mandatory Access Control to encapsulate student code.
The system shall use a chroot environment to encapsulate student code.

The system shall use a firewall that labels packets with a Mandatory Access
Control policy context.

The student code will be allowed to execute system calls used for the reading,
writing, creating, opening, and closing of data files, and terminal input and
output.

The student code will not be allowed to execute system calls not enumerated in
the requirements.

e Integration Requirements

O

The grader component will be run by the web server and given command line
options.

The grader component will return its output to the web server as a file.

The grader component will be interfaced to a database for storing student
scores.

The Blackboard interface will only obtain student scores from the database.

SSH/Maintenance

Terminal

MAC Aware Firewall

System Block Diagram

TAs/Professors can have
shell access on server

Security Encapsulation

for maintenance

1

Incoming Packets are
labelled according to
their destination
application. I.E. Web
Interface or SSH

a file and generate results

Web Interface

Web Interface can open A

Command to start Grader to process |0 I

Grader

h 4

Processes file. Checks
for cheating against
previously checked &
stored files.

A 4

Generates Reports and
stores them to be
reviewed by TAs/

Professors

files and access database
with reports from Grader

Database/File
Storage

Grades can be
submitted to
Blackboard.

PHP Framework

Zend Framework 2

To meet the requirements for our front-end php website, we have chosen to use the
php framework Zend Framework 2 (ZF2). With its efficient use of resources, high
customizability, existing code base, security, and reliability, Zend Framework is an excellent
choice. Additionally, ZF2 uses Doctrine 2 as its object relational mapper. Doctrine 2 is a
powerful tool that will aid in obfuscate the complex database relations and queries. However,
a developer must have a strong top level understanding of the framework before creating
content.

Modules - what we make

.ZF2 uses modules to separate its main extra components. We will create one module

named COGS, that ZF2 will include. The module will hold all of the code (javascript,php,html)
that will hook into ZF2.

Configuration - let ZF2 do the busy work

Top-level flow of routing is shown in the following figure. Luckley, ZendFramework will
auto load all necessary resources and route complex urls intuitively. The team will have to
modify a few key configuration files within ZF2 in order for ZF2 to understand the navigation
map. The following list describes the config files the team will have to manage (many will get
quite large with rules and mappings).

Application.config
This is the main configuration for the Entire ZF2 framework. It lists the required
modules and adjusts the listener options.

Module.config
This will be the main configuration file for our COGS module. It will contain all
of the the routing rules, plugin requirements, and configuration arguments for
various ZF2 managers. This will be a large config file.

Local.config
This will hold private, local data like user information and database passwords.

Controllers - the main brains

After configurations are properly setup, ZF2 will handle the technical work of routing

and resource handling. Once a user requests a page, ZF2 will present the correct controller
file with a request object. We will write the controller files and they will do the main
calculations behind ever user interface. The controller files will use ZF2 entity manager to talk
to the database, and use the View files to build the html. It is within the Controller files where
all of the algorithmic coding will be done. All other files will contain supporting functions and

definitions.

PHP Framework Directory Map

-WwWw root-
config/
autoload/
data/
module/
application/
COGSs/
config/
src/
Controller/
Entity/
Form/
Plugin/
view/
public/
vendor/

-config files to autoload

-autogenerated scripts for optimization

-directory to hold ZF2 modules

-default ZF2 module (contains placeholder views)
-the custom Module

-module configuration file(s)

-contains all of the php code

-contains the main logic code

-contains the mapping code for the database
-contains the form objects

-contains helper code for the Controllers
-contains the phtml views files

-index.php (start point), and public resources (img)
-ZF2 engine and managers (do not touch)

Zend Framework2 Execution Flow

Zend Framework Page load Process

Execution flow

@

v

=

=

& Request Page Render Html

W

o A

v

o5 Requires Configured
o % bootstrap.ph
i by team
. v ;
L
S Auto load Cross-
W m | . Launch
8 5 framework —# Map plugins reference Evente Respond
= ﬂ e
G paths page listing
=g l S g g T I'y

» ' Map route to Dispatch To

2 Listen for . controller : controller

;i:‘ Route Event and build with

Arguments arguements
¥

= P £ Give

2 r:c:s;st; ice N Yo proccessed Respond

: o

G BRESRR data to view 100% coded

o i by team
B
v
Convert Data
Objestsito —» Respond
html
Response

3 ’ Object
o] Bceive tiia | Querysal Convert definitions
= - | s results to .- and methods
= 4 PHP objects coded by
g team

This diagram describes the top level execution flow for the PHP framework. To describe the
process simply: ZF2 uses a combination of autoloaders and event driven managers that route
to Controllers, which in turn process user input, and eventually return html via view files.

Testing

The components of the system will be unit tested using Google Test. Demonstration,

manual testing, and inspection will also be performed on the system.

The proper flow of the interface will be tested via demonstration.

All grader functionality will be unit tested.

All functionality of the Blackboard interface will be unit tested.

All functionality of the Cheating detector will be unit tested.

The encapsulation of student executables using the Mandatory Access Control will be
unit tested.

The chroot encapsulation of student executables will be manually tested for
vulnerabilities.

COTS software will verified as secure and reliable by checking packages on the
National Vulnerability Database.

Firewall configuration and context labeling will be tested via demonstration.

Screen Sketches

Create a New Assignment: This page is where instructors will create new assignments for
students to turn in. This page will only be visible to instructors and includes locations for
adding assignment name, dates, descriptions, and attaching files and unit tests. The
“Previous Assignments” buttons allows the instructor to use a previous assignment as a
template, useful in the event of assignments being very similar or exactly the same as a
previous assignment. Assignment name and dates are required by the system to create an
assignment, while the other fields are all optional.

Header Bar - You are Instructor

Home

Create a New Assignment

(F’revious Assig nments)

Assignments

Assignment Name
Create New Assignment

| Enter Assignment Name |

Student Grades Begin Date Due Date Last Day Availible

[311415 | [[3/27/2015 [[3/302015 [E)]

Assignment Description

Grade Assignments

sidebar This is a description of an assignment. It is either
really long or not long at all.

sidebar text

sidebar text

Log Out text

Upload
Attach Files (Lpbad

Upload

Attach Unit Tests

(Create Assignment)

Create a New Class: This screen is used once per semester by an instructor to create an
instance of a class. To create a class an instructor must include a name and dates. A
description and sections are optional. The sections are used by students to pick their section,
which can be useful in grading. This page is only visible to instructor users.

Header Bar - You are Instructor

Home

Create a New Class

(Previous Classes)

Assignments

Class Name
Create New Assignment]

| Enter Class Name |

Student Grades Begin Date End Date

[1r06115 T 509115
Grade Assignments

Class Description Class Sections
sidebar This is a description of a class. It is either really A (T 2-4)

long or not long at all. B (W 12-2)

. C (W2-4)
sidebar text DF (12-2)

sidebar text

Log Out text

Create Class

Grading Screen: This is the screen seen by instructors to be used for grading. The screen
shows the students name and section as well as the students “report”. The report includes the
students source code, compiler output, code output, and “cheating” score. If unit tests are
used, then the unit tests scores and information will be shown. The screen also includes
scoring rubrics. The score for unit tests is auto-generated by the system. The grader can
check off if code has various attributes (pre-set when the assignment is made), which
generates the value in the “score” field. The instructor can then modify the score if need be
with the modification field. The total score is what the score the student will receive for the
assignment.

Header Bar - You are Instructor
Home . . .
(Previous Student) Viewing Assignment [Name] Submission from Next Student
Student Name : : Section
[Assignments
Create New Assignment} Report
. A Unit Tests: I:l
Unit Tests: 9/10 !
rreEErs --failed use case "HasKittens" E If Statements
; .) [0 For-Loops
Cheating Report: 10% match (link) M User Input
Grade Assignments Comp\le Output:) . . Score:
warning (23:12): Pointer makes integer without cast
) Modification:
sidebar Code Output:
1 i i ?
_H>e;llo. Would you like to hear a joke (y/n)? Total Score:
sidebar Pick a number between 0 and 3
> Additional Comments _
Why did the cow go to the moon?
sidebar To get to the other side!
A\ v
Log Out
Submit and Next

Submit and Quit

The log in screen for COGS will use pubcookie to authenticate, and so students and
instructors will use their NetID and password to log in.

COS

Log In

NetlD: | BoblSuU

Password] =

The new user sign up has students enter their name and NetID and select the class and
section. This enters the student into the system and associates them with a class that already
exists and a section that exists. If the class has no sections associated with it, the section

dropdown will be grayed out.

New User Sign Up

First Name Select a Class H
Last Name Select a Section H

ISU Login (Submit)

The page for a student to submit an assignment includes locations for attaching a file to
submit, attaching input, and adding comments. The student has to indicate that they are
including input.

Header Bar - You are Student |

Home

Submit Attempt for Assignment [Name]

My Classes Notes

text

My Assignments
text

My Grades

text

sidebar
Upload Assignment
sidebar .
[0 1 have provided input Upload input

sidebar

Log Out

Welcome screen: Just a splash page to catch users, includes information about COGs and
links for logging in and signing up.

Welcome to COGS!

What is COGS?

Lorem ipsum dolor sit amet, maiores ornare ac
fermentum, imperdiet ut vivamus a, nam lectus
at nunc. Quam euismod sem, semper ut
potenti pellentesque quisque. In eget sapien
sed, sit duis vestibulum ultricies, placerat morbi
amet vel, nullam in in lorem vel. In molestie elit
dui dictum, praesent nascetur pulvinar sed, in
dolor pede in aliquam, risus nec error quis
pharetra. Eros metus quam augue

Created by Senior Design Team Dec15-21

