

COGS

Central Online Grading System

Final Document

C O G S F i n a l D o c u m e n t P a g e | 2

Team
Forrest Scott – Computer Engineering

Daniel Riechers – Computer Engineering

Zachary Lones – Computer Engineering

Daniel McDonough – Computer Engineering

Kathryn Widen – Computer Engineering

Client and Advisor
Dr. Thomas Daniels

Team Dec15-21

Table of Contents
Project Design .. 3

Problem Statement .. 3

Solution ... 3

Definitions... 3

Overview ... 4

System Description ... 4

System Breakdown ... 7

Testing .. 7

Operation Manual .. 8

Authentication .. 8

Submitting assignments .. 9

Add/remove/edit Users .. 10

Creating Assignments ... 11

Grading Submissions ... 12

Alternative Versions ... 13

Automated Program Analysis ... 13

Unit Testing .. 13

Automatic Blackboard Integration .. 14

Cheating Detection .. 14

Things Deemed Noteworthy .. 15

Looking forward .. 15

Security ... 15

Binary Injection ... 15

C O G S F i n a l D o c u m e n t P a g e | 3

Project Design

Problem Statement
 Grading code submitted through blackboard is tedious and time consuming. Blackboard

does not display .c files, meaning that TAs who are grading student code must download and

compile each individual submission. With a large amount of students in a course, this becomes

very time consuming.

Solution
 Create a website where students can submit assignment code. This website will provide a

streamlined single page grading process to instructors that will automate parts of the grading

process so that Instructors are only responsible for grading student code. The website will

include interfaces for students to customize their code arguments and view their compile and run

results. Lastly, the website will be equipped with MOSS modules that will aid Instructors in

cheating detection.

Definitions
COGS: Abbreviation for Central Online Grading System

Server: Hosts grader, web interface, and database

Grader: Compiles and runs student code, is not a human. Grader does not assign scores, it

generates reports

Report: The output of the compiler and code. This includes student source code, student

comments, and student inputs to be used for execution

Student: Person who submits code to COG server, generally a student in the course

Instructor: Person who uses grader report to assign a score to submissions, generally TAs

Professor: Person with slightly more power than Instructor, generally the professor

Submission: A student’s single attempt at an assignment

ISO: An image file used to record data onto compact discs.

Kickstart: A service for automating the installation and configuration of Redhat ® systems

CSV file: Comma Separated Values file which allows data to be saved in a structured format

RPM: Redhat ® Package Manager. RPM files are used to package and deliver compiled software

C O G S F i n a l D o c u m e n t P a g e | 4

Overview
 COGS is split into two major components, the front end and the back end. The front end

is the web server which houses the user interface of COGS. The front end is what all users will

interact with, but these interactions will be different for different users. User authentication is

handled by Shibboleth, which is the standard ISU authentication scheme. For students, this is

where they will view their assignments and submit code. For student code submissions, students

will be given a report that will mimic what they would see if they are compiling their code

normally, this is done in order to make the system seem more familiar and friendly. For

Instructors, the main feature of COGS is the single page grading. Instructors will be given all

information required for grading a student submission on one page. This page will include the

student’s source code and executables, student comments, and tools to assign a grade and give

feedback to the student. There are other functionalities for instructors as well, such as MOSS

cheating detection, and managing students. For professors, this is where they will create

assignments and manage different aspects of the course, such as sections, students, and

instructors. The back end of COGS is responsible for safely compiling student code and

generating reports.

Figure4.1 – System Overview Diagram

 System Description
 Front End: The system will be accessible through a webpage hosted on ISU servers. The

front end will have four distinct users:

o Student Front End - Any user that is identified as a student will use COGS to

upload assignments.

C O G S F i n a l D o c u m e n t P a g e | 5

i. View assignment details

ii. Submit/Resubmit assignments

iii. View report from grader

o Instructor Front End - The instructor front end will be viewable by those with

instructor privileges. The instructor will be the heaviest users of COGS, and so

the system should be set up to make their workflow the smoothest.

i. Add/remove students

ii. View/grade submissions that they are authorized to see

iii. Apply MOSS cheating detection to student submissions that they are

authorized to see

iv. Generate CSV file with student grades

o Professor Front End – The professor front end will have all the same functionality

as an instructor user with added privileges:

i. Add/remove Instructors that they are authorized to see

ii. Add/remove/edit Courses that they are authorized to see

iii. Add/remove/edit Assignments that they are authorized to see

o Admin Front End - The admin front end will have all the same functionality as a

professor user with added privileges:

i. Add/remove/edit Professors

ii. Add/remove Admins

iii. Manage individual Professor privilege

iv. Add/remove/edit all Courses

v. Add/remove/edit all Assignments

vi. Add/remove/edit all Submissions

 Back End: The back end system is responsible for safely compiling submissions and

generating reports. The front end delegates the tasks of compiling and running student

code to the backend through and http interface

C O G S F i n a l D o c u m e n t P a g e | 6

The following diagram shows the process used by our front end web server to generate web

pages for the user.

Figure 6.1 – Front End Execution Flow Diagram

C O G S F i n a l D o c u m e n t P a g e | 7

System Breakdown
System Deliverables:

 ISO containing all necessary COTS packages and dependencies

o Install from ISO automated with Kickstart

o All system configuration automated with Kickstart

 COGS System:

o Secure encapsulated environment for running student code

o Compiler

i. Support for gcc

ii. Support for clang

o Mandatory Access Control Policy

i. Transparent to administrators

ii. Tightly secured environment for running encapsulated code

Software Deliverables:

 System ISO

o The install process is entirely automated except for network, disk, and password

setup.

o The ISO installs and configures all software to a working state.

o All software dependencies are added to the ISO as RPMs.

o Dependencies with no RPM packages are built from source during the install

phase.

o COGS software executables and web content are added to an overlay tarball.

Testing
 Our back end was designed through test driven development, meaning that unit tests were

created before coding was started. This ensures that the code reached full coverage of the

requirements and gave us a way to test while coding. Our security policy has been thoroughly

manually tested. The front end components have been individually tested. We had further plans

to test the front end in alpha and beta phases. The alpha test would have a small amount of users

looking for bugs and flaws in the system that we would fix and then immediately have beta

testing with a large amount of users. Beta testing would find any remaining bugs as well as

perform load tests on the system. Due to time constraints, we were not able to meet necessary

deadlines to include outside testing. In lieu of this, we have conducted bug hunts ourselves. We

realize this is not enough testing that we can confidently say that the system is fully functional

and working as intended, so one of our group member has agreed to make sure COGS is up and

running in the following semester as an independent study.

C O G S F i n a l D o c u m e n t P a g e | 8

Operation Manual

Authentication
 In order to make it so that students, Instructors, and Professors do not need to create and

remember the information for a new account, as well as so that our website is familiar to users

and friendly, we use Shibboleth to authenticate users for COGS. Users will log in with their

usual netID and password. The login page is shown below.

Figure 8.1 – Authentication page

C O G S F i n a l D o c u m e n t P a g e | 9

Submitting assignments
 Students’ main use of COGS will be to submit their code for assignments. After logging

in, students will select the course and then the assignment that they wish to submit for, at this

point the student will be shown the page below. On this page, there are straightforward places

where the student can upload their source and input files, include terminal input and execution

arguments, as well as submit any comments they would like the Instructor to see. When they hit

the submit button, they will be shown a report of their submission. This report will include any

compilation errors and warnings as if they had compiled the code themselves, they will also be

shown the output of their execution. The student is able to submit as many times as they like

until the assignment due date and only their latest submission will be graded.

Figure 9.1 – Assignment Submission page

C O G S F i n a l D o c u m e n t P a g e | 10

Add/remove/edit Users
Higher level users will be able to add/remove/edit other users to courses/sections etc. (an

instructor can add students, a professor can add instructors and students, admins can add any

users) Shown below is what an Instructor would see when adding/removing/editing students in

sections. Clicking the checkbox next to a student and then clicking “drop” will remove the

student. The Instructor can add a student by clicking add and then entering the student’s netID.

The Instructor can edit the student’s section by clicking the Edit Section button.

Figure 10.1 – Add/Remove/Edit Students page

C O G S F i n a l D o c u m e n t P a g e | 11

Creating Assignments
 Professors’ main use of COGS will be creating assignments that the students will have to

complete. Shown below is the straightforward form a professor will need to complete in order

create a new assignment. The professor will select the course they are creating the assignment for

from a dropdown box which will display the courses they are a professor for. They then fill out

the assignment name and assignment description and assignment start, due, and last submission

dates. Students will not be able to submit code for an assignment before the start date, their

submissions will be counted late if it is after the due date, and submissions will not be accepted

after the last submission date. The professor can also fill out any checkboxes and numberboxes

they wish to be included, these will be shown on the instructor grading page and are intended to

make the grading process as fast and as easy as possible. In the example shown below, there is a

checkbox for whether the student uses a for loop in their code or not. When grading, the

checkbox can be checked to give the student 10 points for using a for loop, or not checked to

give a student 0 points. The numberbox shown in the example is for code quality and a grader

can assign up to 10 points. The professor can also attach files, such as an assignment pdf, and

also attach input files that will automatically be added to the student’s input files for assignment

creation.

Figure 11.1 – Assignment Creation page

C O G S F i n a l D o c u m e n t P a g e | 12

Grading Submissions
 Shown below is the screen Instructors will see when grading code. This page displays

student source code, comments, and the execution results of any inputs they provided. With all

necessary information on the page, the Instructor can check any checkboxes and assign numbers

to any numberboxes that were created with the assignment, provide feedback to the student in the

comment section, and then simply click next to start grading the next student’s submission.

Figure 12.1 – Submission Grading page

C O G S F i n a l D o c u m e n t P a g e | 13

Alternative Versions
Our main goal has always been to streamline the process of grading student code by

creating a website that would achieve this goal. The process of website creation has a standard

general design that has been proven to work and be efficient. In addition to this, our team had a

member who has considerable experience with web design, and as a group we spent a large

amount of time creating a project plan that effectively achieved our goals, made sense for our

project, and that we knew would work. Due to this, the main functionality and design of COGS

has remained pretty much the same throughout the project.

However, not all of our team members had experience with web design, and we did have

some differences in ideas while creating our initial project plan. With a clear goal that seemed

easily achievable, the members of our group with no web design experience got caught up in the

idea of creating this amazing website that would do it all. There were some functionalities that

we wanted to add to our website that while they would have been nice to have, where not

required functionalities to achieve our goal. Our group member who had previous experience

with web design insisted that we only include these in our project plan as “stretch goals”. He was

right. The rest of the team had underestimated how long it would take to learn website design

and create our main functionalities, and because of this our “stretch goals” were not able to be

implemented. Listed below are the stretch goals that did not make it into the project.

Automated Program Analysis
 Our client for the project is a professor for Cpr E 185, an introduction to programming

course that teaches the basics of programming in C. He employs the mindset that programming

should include a creative aspect and assigns homework such as “spend an hour making a

program that uses arrays.” This makes it clear why the main goal of COGS is to streamline the

process of humans grading the code. However, we had ideas of this website being used by many

professors for different courses, and so we wanted to include some form of static analysis that

would be able to either fully automate the grading process of code or make it so that only

minimal human effort was required. This was the first stretch goal that we decided would not be

implemented. Implementation of a fully, or even mostly, automated grader would have been

difficult and very time consuming.

Unit Testing
 Keeping with our goal main goal of streamlining the grading process, our assignment

creation dictates what our grading page will look like for that assignment. Professors can include

checkboxes and number boxes specific for that assignment. For example, if the assignment

requires students to use a “for loop”, a checkbox can be included on the grading page for whether

the student uses a “for loop” or not. We had also wanted to include the option for Professors to

specify unit tests that would be applied to student code and results would be shown on the

grading page. This stretch goal was not implemented mainly due to time constraints.

C O G S F i n a l D o c u m e n t P a g e | 14

Automatic Blackboard Integration
 In the beginning, our plan was to have grades that were inputted in COGS be

automatically sent to blackboard. However, our client was worried about that a system error

potentially overwriting or wiping student grade data which made us rethink how blackboard

integration would work. We decided to have COGS generate a CSV file that could be uploaded

to blackboard after it was checked for errors.

 Cheating Detection
 In programming classes with lots of students, there is reason to be concerned about

cheating. Students will often work together on assignments whether permitted or not, but often

times students will go so far as to copy and paste code from other students or from online. There

are programs that have already been written that will analyze similarities between code

submissions in order to catch cheating from copying code. These programs are smart enough to

catch cheating even if student change variable names, etc. We had a stretch goal of creating our

own cheating detection algorithm and there was talk of it being able to catch cheating from

students copying code from online. While it would have been neat to have created our own

program, the same functionality could be achieved by using the programs that are already in

existence and are known to work, and work well. It made the most sense to make use of this, and

so we have implemented use of Stanford MOSS to catch cheating.

C O G S F i n a l D o c u m e n t P a g e | 15

Things Deemed Noteworthy
Looking forward
 There is a large step between completing a software project and making sure that that

software is implemented correctly and is fully functional. In addition to this, a lot of our

components took longer to implement than we had planned and we did not get to conduct as

much testing as we would have liked to. In order to make sure that our goal of having COGS

vastly improve student and instructor experience in programming courses, Daniel Riechers will

be conducting work as a system administrator next semester to ensure that COGS is up and

running.

Security
 One of the many things done by COGS is compiling and running arbitrary, student

written code. This presents a very obvious attack vector to a regular user, submitting malicious

code. This was the main focus of our security efforts. Other security concerns include: Cross site

scripting, SQL Injection, General user permissions, and Buffer Overruns.
 A few steps were taken to mitigate the problem of malicious student code. First to

prevent students from having full access to the file system, their code is run a chroot jail. This

jail contains only the bare minimum files required to run the student code: Runtime libraries, and

student / instructor provided input files. All files in the chroot jail have hard coded permissions

and the student code is not allowed to change permissions of files in the jail. The next key

security feature to prevent malicious student code is a targeted selinux policy. This security

policy restricts the calls the student’s code is capable of making to the system. For instance, the

student code cannot open network sockets, fork new processes, break out of chroot jails, change

file permissions, etc. The policy has a whitelist of only the necessary system calls for an intro to

C course.
 The other security issues were mostly handled by best practice coding. All SQL queries

are processed by Doctrine 2, which automatically sanitizes them to prevent things like dumping

all the user data in the frontend database. All web forms use CSRF tokens to prevent cross site

scripting. During vulnerable phases of the compile and run process, the system switches to a low

privilege user. To prevent buffer overruns all the input is validated so it can only run in a defined

way on the system, and to further mitigate buffer overruns we compile with canary values turned

on. Canary values are put on the end of buffers and checked periodically to ensure the buffer has

not been overrun and kills the program if it has.

Binary Injection
 In order to generate a “conversational style” view of student code input/output, buffering

needed to be turned off on the student code child process. Disabling buffering on the parent does

not disable buffering on the child due to the buffering parameters being reloaded to their default

values with the standard c library. When originally looking at this problem, the solution seems to

C O G S F i n a l D o c u m e n t P a g e | 16

be to have code that runs on the child process to disable buffering, but our child process is the

student’s code, which we treat as a black box and can’t edit.

 To solve this problem we injected binary code so that during compilation, their main() is

renamed to studentmain() and a new main() function is injected that turns off buffering and then

calls studentmain(). This results in the conversation style communication that is needed without

editing the student’s source code.

Figure 16.1 – Binary Injection Diagram

